Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 14(11)2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2099856

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal disease of cats that currently lacks licensed and affordable vaccines or antiviral therapeutics. The disease has a spectrum of clinical presentations including an effusive ("wet") form and non-effusive ("dry") form, both of which may be complicated by neurologic or ocular involvement. The feline coronavirus (FCoV) biotype, termed feline infectious peritonitis virus (FIPV), is the etiologic agent of FIP. The objective of this study was to determine and compare the in vitro antiviral efficacies of the viral protease inhibitors GC376 and nirmatrelvir and the nucleoside analogs remdesivir (RDV), GS-441524, molnupiravir (MPV; EIDD-2801), and ß-D-N4-hydroxycytidine (NHC; EIDD-1931). These antiviral agents were functionally evaluated using an optimized in vitro bioassay system. Antivirals were assessed as monotherapies against FIPV serotypes I and II and as combined anticoronaviral therapies (CACT) against FIPV serotype II, which provided evidence for synergy for selected combinations. We also determined the pharmacokinetic properties of MPV, GS-441524, and RDV after oral administration to cats in vivo as well as after intravenous administration of RDV. We established that orally administered MPV at 10 mg/kg, GS-441524 and RDV at 25 mg/kg, and intravenously administered RDV at 7 mg/kg achieves plasma levels greater than the established corresponding EC50 values, which are sustained over 24 h for GS-441514 and RDV.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Cats , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Assay
2.
Pathogens ; 11(4)2022 Mar 24.
Article in English | MEDLINE | ID: covidwho-1798887

ABSTRACT

A One Health approach to the epidemiology, management, surveillance, and control of leptospirosis relies on accessible and accurate diagnostics that can be applied to humans and companion animals and livestock. Diagnosis should be multifaceted and take into account exposure risk, clinical presentation, and multiple direct and/or indirect diagnostic approaches. Methods of direct detection of Leptospira spp. include culture, histopathology and immunostaining of tissues or clinical specimens, and nucleic acid amplification tests (NAATs). Indirect serologic methods to detect leptospiral antibodies include the microscopic agglutination test (MAT), the enzyme-linked immunosorbent assay (ELISA), and lateral flow methods. Rapid diagnostics that can be applied at the point-of-care; NAAT and lateral flow serologic tests are essential for management of acute infection and control of outbreaks. Culture is essential to an understanding of regional knowledge of circulating strains, and we discuss recent improvements in methods for cultivation, genomic sequencing, and serotyping. We review the limitations of NAATs, MAT, and other diagnostic approaches in the context of our expanding understanding of the diversity of pathogenic Leptospira spp. Novel approaches are needed, such as loop mediated isothermal amplification (LAMP) and clustered regularly interspaced short palindromic repeats (CRISPR)-based approaches to leptospiral nucleic acid detection.

3.
Vet Clin North Am Small Anim Pract ; 50(2): 405-418, 2020 Mar.
Article in English | MEDLINE | ID: covidwho-830411

ABSTRACT

Canine infectious respiratory disease complex (CIRDC) refers to a syndrome of diseases that can be caused by several different bacterial and viral pathogens. These pathogens are often highly contagious, and coinfections are common. Clinical signs are frequently mild and self-limiting; however, some individual cases progress to severe disease. Clinical diagnosis of CIRDC is often based on history of exposure and physical examination findings; however, determining the etiologic agent requires application of specific diagnostic tests, and results can be difficult to interpret because of widespread subclinical infections.


Subject(s)
Dog Diseases , Respiratory Tract Infections/veterinary , Animals , Anti-Infective Agents/therapeutic use , Bacterial Vaccines/therapeutic use , Dog Diseases/diagnosis , Dog Diseases/drug therapy , Dog Diseases/microbiology , Dog Diseases/prevention & control , Dogs , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL